The Applied Biology & Chemistry Journal (TABCJ)

ISSN: 2582-8789 (online)

Bio-genesis and deregulation of circular ribonucleic acid and their role in human cancer

Rajakishore Mishra

Department of Life Sciences, School of Natural Sciences, Central University of Jharkhand, Ratu-Lohardaga Road, Brambe, Ranchi-835205, Jharkhand, India


27 December 2020


RiboNucleic Acid (RNA) occupies the center position in the central dogma of molecular biology. These are the nucleotide with a ribose sugar and are found either in linear or circular form. The linear RNAs are of different types and include ribosomal RNA (rRNA), messenger RNA (mRNA), transfer RNA (t-RNA), small nuclear (snRNA) RNA, and very small/micro RNA (microRNAs). The circular (circRNA) RNA is a group of noncoding RNA, stable molecules, established recently and linked with the regulation of different genes, RNAs including microRNAs. The current understanding of these molecules suggests that these circRNAs are fairly conserved and show tissue-specific expression patterns. These molecules are connected with different pathogenic conditions and associated with verities of diseases, including cancer. CircRNAs are thus contributing to tumorigenesis, and these molecules show the potential to become future predictive biomarkers for diagnosis, prognosis and even can be targeted in personalized therapy. Hence, these bio-molecules will get exposed frequently, and their new cellular role will emerge, soon. This review outlines the current trend, limitations, and future potential of circRNA in cancer research.


cancer; cancer hallmarks; circRNA; circRNA biogenesis; circRNA function; circular RNA

Cite this article

Mishra R (2020). Bio-genesis and deregulation of circular ribonucleic acid and their role in human cancer. T. Appl. Biol. Chem. J; 1(2):83-94.

Citation: 1


[1] Sanger HL, Klotz G, Riesner D, Gross HJ, Kleinschmidt AK (1976). Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proc Natl Acad Sci USA; 73(11):3852-3856.

[2] Hsu MT, Coca-Prados M (1979). Electron microscopic evidence for the circular form of RNA in the cytoplasm of eukaryotic cells. Nature; 280(5720):339-340.

[3] Kristensen LS, Andersen MS, Stagsted LVW, Ebbesen KK, Hansen TB, Kjems J (2019). The biogenesis, biology and characterization of circular RNAs. Nature Review Genetics; 20(11):675-691.

[4] Wang Y, Liu J, Ma J, Sun T, Zhou Q, Wang W, et al (2019). Exosomal circRNAs: biogenesis, effect and application in human diseases. Molecular Cancer; 18(1):116.

[5] Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, et al (2013). Circular RNAs are a large class of animal RNAs with regulatory potency. Nature; 495(7441):333-338.

[6] Lei K, Bai H, Wei Z, Xie C, Wang J, Li J, et al (2018). The mechanism and function of circular RNAs in human diseases. Experim Cell Res; 368(2):147-158.

[7] Chen LL, Yang L (2015). Regulation of circRNA biogenesis. RNA Biology; 12(4):381-388.

[8] Wilusz JE (2015). Repetitive elements regulate circular RNA biogenesis. Mobile Genetic Elements; 5(3):1-7.

[9] Thomson DW, Dinger ME (2016). Endogenous microRNA sponges: evidence and controversy. Nature Review Genetics; 17(5):272-83.

[10] Barrett SP, Parker KR, Horn C, Mata M, Salzman J (2017). ciRS-7 exonic sequence is embedded in a long noncoding RNA locus. PLoS Genetics; 13(12):e1007114.

[11] Li RC, Ke S, Meng FK, Lu J, Zou XJ, He ZG, et al (2018). CiRS-7 promotes growth and metastasis of esophageal squamous cell carcinoma via regulation of miR-7/HOXB13. Cell Death Disease; 9(8):838.

[12] Chuang TJ, Chen YJ, Chen CY, Mai TL, Wang YD, Yeh CS, et al (2018). Integrative transcriptome sequencing reveals extensive alternative trans-splicing and cis-backsplicing in human cells. Nucleic Acids Research; 46(7):3671-3691.

[13] Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, Liu J, et al (2013). Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA; 19(2):141-157.

[14] Kelly S, Greenman C, Cook PR, Papantonis A (2015). Exon Skipping Is Correlated with Exon Circularization. J Mol Biol; 427(15):2414-2417.

[15] Guarnerio J, Bezzi M, Jeong JC, Paffenholz SV, Berry K, Naldini MM, et al (2016). Oncogenic Role of Fusion-circRNAs Derived from Cancer-Associated Chromosomal Translocations. Cell; 165(2):289-302.

[16] Vo JN, Cieslik M, Zhang Y, Shukla S, Xiao L, Zhang Y, et al (2019). The Landscape of Circular RNA in Cancer. Cell; 176(4):869-881 e13.

[17] Li X, Ding J, Wang X, Cheng Z, Zhu Q (2020). NUDT21 regulates circRNA cyclization and ceRNA crosstalk in hepatocellular carcinoma. Oncogene; 39(4):891-904.

[18] Chen L, Nan A, Zhang N, Jia Y, Li X, Ling Y, et al (2019). Circular RNA 100146 functions as an oncogene through direct binding to miR-361-3p and miR-615-5p in non-small cell lung cancer. Molecular Cancer; 18(1):13.

[19] Zeng K, Chen X, Xu M, Liu X, Hu X, Xu T, et al (2018). CircHIPK3 promotes colorectal cancer growth and metastasis by sponging miR-7. Cell Death Disease; 9(4):417.

[20] Zhang HD, Jiang LH, Sun DW, Hou JC, Ji ZL (2018). CircRNA: a novel type of biomarker for cancer. Breast Cancer; 25(1):1-7.

[21] Xu H, Sun Y, You B, Huang CP, Ye D, Chang C (2020). Androgen receptor reverses the oncometabolite R-2-hydroxyglutarate-induced prostate cancer cell invasion via suppressing the circRNA-51217/miRNA-646/TGFbeta1/p-Smad2/3 signaling. Cancer Letters; 472:151-164.

[22] Xie F, Li Y, Wang M, Huang C, Tao D, Zheng F, et al (2018). Circular RNA BCRC-3 suppresses bladder cancer proliferation through miR-182-5p/p27 axis. Molecular Cancer; 17(1):144.

[23] Wang J, Wu A, Yang B, Zhu X, Teng Y, Ai Z (2020). Profiling and bioinformatics analyses reveal differential circular RNA expression in ovarian cancer. Gene; 724:144150.

[24] Chen Q, Liu T, Bao Y, Zhao T, Wang J, Wang H, et al (2020). CircRNA cRAPGEF5 inhibits the growth and metastasis of renal cell carcinoma via the miR-27a-3p/TXNIP pathway. Cancer Letters; 469:68-77.

[25] Tang W, Fu K, Sun H, Rong D, Wang H, Cao H (2018). CircRNA microarray profiling identifies a novel circulating biomarker for detection of gastric cancer. Molecular Cancer; 17(1):137.

[26] Zhu X, Shao P, Tang Y, Shu M, Hu WW, Zhang Y (2019). hsa_circRNA_100533 regulates GNAS by sponging hsa_miR_933 to prevent oral squamous cell carcinoma. J Cell Biochem;120(11):19159-71.

[27] Verduci L, Ferraiuolo M, Sacconi A, Ganci F, Vitale J, Colombo T, et al (2017). The oncogenic role of circPVT1 in head and neck squamous cell carcinoma is mediated through the mutant p53/YAP/TEAD transcription-competent complex. Genome Biology; 18(1):237.

[28] Lin Z, Long F, Zhao M, Zhang X, Yang M (2020). The role of circular RNAs in hematological malignancies. Genomics; 112(6):4000-4008.

[29] Shi F, Shi Z, Zhao Y, Tian J (2019). CircRNA hsa-circ-0014359 promotes glioma progression by regulating miR-153/PI3K signaling. Biochem Biophys Res Comm; 510(4):614-620.

[30] Yang Y, Wang Z (2019). IRES-mediated cap-independent translation, a path leading to hidden proteome. J Mol Cell Biol; 11(10):911-919.

[31] Dudekula DB, Panda AC, Grammatikakis I, De S, Abdelmohsen K, Gorospe M (2016). CircInteractome: A web tool for exploring circular RNAs and their interacting proteins and microRNAs. RNA Biology; 13(1):34-42.

[32] Hansen TB, Wiklund ED, Bramsen JB, Villadsen SB, Statham AL, Clark SJ, et al (2011). miRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA. EMBO J; 30(21):4414-4422.

[33] Patop IL, Wust S, Kadener S (2019). Past, present, and future of circRNAs. EMBO J; 38(16):e100836.

[34] Hsiao KY, Lin YC, Gupta SK, Chang N, Yen L, Sun HS, et al (2017). Noncoding Effects of Circular RNA CCDC66 Promote Colon Cancer Growth and Metastasis. Cancer Res; 77(9):2339-2350.

[35] Du WW, Yang W, Liu E, Yang Z, Dhaliwal P, Yang BB (2016). Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucleic Acids Research; 44(6):2846-2858.

[36] Li Y, Zheng F, Xiao X, Xie F, Tao D, Huang C, et al (2017). CircHIPK3 sponges miR-558 to suppress heparanase expression in bladder cancer cells. EMBO Reports; 18(9):1646-1659.

[37] Panda AC, Grammatikakis I, Kim KM, De S, Martindale JL, Munk R, et al (2017). Identification of senescence-associated circular RNAs (SAC-RNAs) reveals senescence suppressor CircPVT1. Nucleic Acids Research; 45(7):4021-4035.

[38] Ashwal-Fluss R, Meyer M, Pamudurti NR, Ivanov A, Bartok O, Hanan M, et al (2014). circRNA biogenesis competes with pre-mRNA splicing. Molecular Cell; 56(1):55-66.

[39] Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, et al (2013). Natural RNA circles function as efficient microRNA sponges. Nature; 495(7441):384-388.

[40] Li Z, Huang C, Bao C, Chen L, Lin M, Wang X, et al (2015). Exon-intron circular RNAs regulate transcription in the nucleus. Nature Struc Mol Biol; 22(3):256-264.

[41] Abdelmohsen K, Panda AC, Munk R, Grammatikakis I, Dudekula DB, De S, et al (2017). Identification of HuR target circular RNAs uncovers suppression of PABPN1 translation by CircPABPN1. RNA Biology;14(3):361-369.

[42] Hanan M, Soreq H, Kadener S (2017). CircRNAs in the brain. RNA Biology; 14(8):1028-1034.

[43] Du WW, Fang L, Yang W, Wu N, Awan FM, Yang Z, et al (2017). Induction of tumor apoptosis through a circular RNA enhancing Foxo3 activity. Cell Death Differentiation; 24(2):357-370.

[44] Huang C, Shan G (2015). What happens at or after transcription: Insights into circRNA biogenesis and function. Transcription; 6(4):61-64.

[45] Li Z, Huang C, Bao C, Chen L, Lin M, Wang X, et al (2017). Corrigendum: Exon-intron circular RNAs regulate transcription in the nucleus. Nature Struc Mol Biol; 24(2):194.

[46] Arnaiz E, Sole C, Manterola L, Iparraguirre L, Otaegui D, Lawrie CH (2019). CircRNAs and cancer: Biomarkers and master regulators. Semin Cancer Biol; 58:90-99.

[47] Zhang Y, Zhang XO, Chen T, Xiang JF, Yin QF, Xing YH, et al (2013). Circular intronic long noncoding RNAs. Mol Cell; 51(6):792-806.

[48] Shang Q, Yang Z, Jia R, Ge S (2019). The novel roles of circRNAs in human cancer. Mol Cancer; 18(1):6.

[49] Yang C, Yuan W, Yang X, Li P, Wang J, Han J, et al (2018). Circular RNA circ-ITCH inhibits bladder cancer progression by sponging miR-17/miR-224 and regulating p21, PTEN expression. Mol Cancer; 17(1):19.

[50] Ge Z, Li LF, Wang CY, Wang Y, Ma WL (2018). CircMTO1 inhibits cell proliferation and invasion by regulating Wnt/beta-catenin signaling pathway in colorectal cancer. Eur Rev Med Pharmacol Sci; 22(23):8203-8209.

[51] Jiang X, Wu X, Chen F, He W, Chen X, Liu L, et al (2018). The profiles and networks of miRNA, lncRNA, mRNA, and circRNA in benzo(a)pyrene-transformed bronchial epithelial cells. J Toxicol Sci; 43(4):281-289.

[52] Meng L, Liu S, Ding P, Chang S, Sang M (2020). Circular RNA ciRS-7 inhibits autophagy of ESCC cells by functioning as miR-1299 sponge to target EGFR signaling. J Cell Biochem; 121(2):1039-1049.

[53] Li YF, Zhang J, Yu L (2019). Circular RNAs Regulate Cancer Onset and Progression via Wnt/beta-Catenin Signaling Pathway. Yonsei Med J; 60(12):1117-1128.

[54] Zhao ZJ, Shen J (2017). Circular RNA participates in the carcinogenesis and the malignant behavior of cancer. RNA Biology; 14(5):514-521.

[55] Lu WY (2017). Roles of the circular RNA circ-Foxo3 in breast cancer progression. Cell Cycle; 16(7):589-590.

[56] Zheng J, Liu X, Xue Y, Gong W, Ma J, Xi Z, et al (2017). TTBK2 circular RNA promotes glioma malignancy by regulating miR-217/HNF1beta/Derlin-1 pathway. J Hematol Oncol; 10(1):52.

[57] Yang P, Qiu Z, Jiang Y, Dong L, Yang W, Gu C, et al (2016). Silencing of cZNF292 circular RNA suppresses human glioma tube formation via the Wnt/beta-catenin signaling pathway. Oncotarget; 7(39):63449-63455.

[58] Zhong Z, Huang M, Lv M, He Y, Duan C, Zhang L, et al (2017). Circular RNA MYLK as a competing endogenous RNA promotes bladder cancer progression through modulating VEGFA/VEGFR2 signaling pathway. Cancer Letters; 403:305-317.

[59] Meng L, Ding P, Liu S, Li Z, Sang M, Shan B (2020). The emerging prospects of circular RNA in tumor immunity. Annals Trans Med; 8(17):1091.

[60] Paramasivam A, Vijayashree Priyadharsini J (2020). Novel insights into m6A modification in circular RNA and implications for immunity. Cell Mol Immunol; 17(6):668-669.

[61] Aktas T, Avsar Ilik I, Maticzka D, Bhardwaj V, Pessoa Rodrigues C, Mittler G, et al (2017). DHX9 suppresses RNA processing defects originating from the Alu invasion of the human genome. Nature; 544(7648):115-119.

[62] Li Q, Wang Y, Wu S, Zhou Z, Ding X, Shi R, et al (2019). CircACC1 Regulates Assembly and Activation of AMPK Complex under Metabolic Stress. Cell Metabol; 30(1):157-173 e7.

[63] Song H, Liu Q, Liao Q (2020). Circular RNA and tumor microenvironment. Cancer Cell Int; 20:211.

[64] Sand M, Bechara FG, Sand D, Gambichler T, Hahn SA, Bromba M, et al (2016). Circular RNA expression in basal cell carcinoma. Epigenomics; 8(5):619-632.

[65] Sand M, Bechara FG, Sand D, Gambichler T, Hahn SA, Bromba M, et al (2016). Long-noncoding RNAs in basal cell carcinoma. Tumour Biology; 37(8):10595-10608.

[66] Zhong Z, Lv M, Chen J (2016). Screening differential circular RNA expression profiles reveals the regulatory role of circTCF25-miR-103a-3p/miR-107-CDK6 pathway in bladder carcinoma. Scientific Reports; 6:30919.

[67] Nair AA, Niu N, Tang X, Thompson KJ, Wang L, Kocher JP, et al (2016). Circular RNAs and their associations with breast cancer subtypes. Oncotarget; 7(49):80967-80979.

[68] Liang HF, Zhang XZ, Liu BG, Jia GT, Li WL (2017). Circular RNA circ-ABCB10 promotes breast cancer proliferation and progression through sponging miR-1271. Am J Cancer Res; 7(7):1566-1576.

[69] Weng W, Wei Q, Toden S, Yoshida K, Nagasaka T, Fujiwara T, et al (2017). Circular RNA ciRS-7-A Promising Prognostic Biomarker and a Potential Therapeutic Target in Colorectal Cancer. Clin Cancer Res; 23(14):3918-3928.

[70] Bachmayr-Heyda A, Reiner AT, Auer K, Sukhbaatar N, Aust S, Bachleitner-Hofmann T, et al (2015). Correlation of circular RNA abundance with proliferation--exemplified with colorectal and ovarian cancer, idiopathic lung fibrosis, and normal human tissues. Scientific Reports; 5:8057.

[71] Kristensen LS, Hansen TB, Veno MT, Kjems J (2018). Circular RNAs in cancer: opportunities and challenges in the field. Oncogene; 37(5):555-565.

[72] Sand M, Bechara FG, Gambichler T, Sand D, Bromba M, Hahn SA, et al (2016). Circular RNA expression in cutaneous squamous cell carcinoma. J Dermatol Sci; 83(3):210-218.

[73] Xia W, Qiu M, Chen R, Wang S, Leng X, Wang J, et al (2016). Circular RNA has_circ_0067934 is up-regulated in esophageal squamous cell carcinoma and promoted proliferation. Scientific Reports; 6:35576.

[74] Su H, Lin F, Deng X, Shen L, Fang Y, Fei Z, et al (2016). Profiling and bioinformatics analyses reveal differential circular RNA expression in radio-resistant esophageal cancer cells. J Trans Med; 14(1):225.

[75] Zheng Q, Bao C, Guo W, Li S, Chen J, Chen B, et al (2016). Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Nature Comm;7 :11215.

[76] Li P, Chen H, Chen S, Mo X, Li T, Xiao B, et al (2017). Circular RNA 0000096 affects cell growth and migration in gastric cancer. British J Cancer; 116(5):626-633.

[77] Song X, Zhang N, Han P, Moon BS, Lai RK, Wang K, et al (2016). Circular RNA profile in gliomas revealed by identification tool UROBORUS. Nucl Acid Res; 44(9):e87.

[78] Barbagallo D, Condorelli A, Ragusa M, Salito L, Sammito M, Banelli B, et al (2016). Dysregulated miR-671-5p / CDR1-AS / CDR1 / VSNL1 axis is involved in glioblastoma multiforme. Oncotarget; 7(4):4746-4759.

[79] Bonizzato A, Gaffo E, Te Kronnie G, Bortoluzzi S (2016). CircRNAs in hematopoiesis and hematological malignancies. Blood Cancer J; 6(10):e483.

[80] Li W, Zhong C, Jiao J, Li P, Cui B, Ji C, et al (2017). Characterization of hsa_circ_0004277 as a New Biomarker for Acute Myeloid Leukemia via Circular RNA Profile and Bioinformatics Analysis. Int J Mol Sci; 18(3).

[81] Xu L, Zhang M, Zheng X, Yi P, Lan C, Xu M (2017). The circular RNA ciRS-7 (Cdr1as) acts as a risk factor of hepatic microvascular invasion in hepatocellular carcinoma. J Cancer Res Clin Oncol; 143(1):17-27.

[82] Qin M, Liu G, Huo X, Tao X, Sun X, Ge Z, et al (2016). Hsa_circ_0001649: A circular RNA and potential novel biomarker for hepatocellular carcinoma. Cancer Biomarkers: Section A of Disease Markers; 16(1):161-169.

[83] Shang X, Li G, Liu H, Li T, Liu J, Zhao Q, et al (2016). Comprehensive Circular RNA Profiling Reveals That hsa_circ_0005075, a New Circular RNA Biomarker, Is Involved in Hepatocellular Crcinoma Development. Medicine; 95(22):e3811.

[84] Han D, Li J, Wang H, Su X, Hou J, Gu Y, et al (2017). Circular RNA circMTO1 acts as the sponge of microRNA-9 to suppress hepatocellular carcinoma progression. Hepatology; 66(4):1151-1164.

[85] Wan L, Zhang L, Fan K, Cheng ZX, Sun QC, Wang JJ (2016). Circular RNA-ITCH Suppresses Lung Cancer Proliferation via Inhibiting the Wnt/beta-Catenin Pathway. BioMed Research Int; 2016:1579490.

[86] Zhu X, Wang X, Wei S, Chen Y, Chen Y, Fan X, et al (2017). hsa_circ_0013958: a circular RNA and potential novel biomarker for lung adenocarcinoma. FEBS Journal; 284(14):2170-2182.

[87] Zhao W, Cui Y, Liu L, Qi X, Liu J, Ma S, et al (2020). Correction to: Splicing factor derived circular RNA circUHRF1 accelerates oral squamous cell carcinoma tumorigenesis via feedback loop. Cell Death Differentiation; 27(6):2033-2034.

[88] Li X, Zhang H, Wang Y, Sun S, Shen Y, Yang H (2019). Silencing circular RNA hsa_circ_0004491 promotes metastasis of oral squamous cell carcinoma. Life Sciences; 239:116883.

[89] Xia B, Hong T, He X, Hu X, Gao Y (2019). A circular RNA derived from MMP9 facilitates oral squamous cell carcinoma metastasis through regulation of MMP9 mRNA stability. Cell Transplant; 28(12):1614-1623.

[90] Pramanik KK, Nagini S, Singh AK, Mishra P, Kashyap T, Nath N, et al (2018). Glycogen synthase kinase-3beta mediated regulation of matrix metalloproteinase-9 and its involvement in oral squamous cell carcinoma progression and invasion. Cell Oncol; 41(1):47-60.

[91] Su W, Sun S, Wang F, Shen Y, Yang H (2019). Circular RNA hsa_circ_0055538 regulates the malignant biological behavior of oral squamous cell carcinoma through the p53/Bcl-2/caspase signaling pathway. J Trans Med; 17(1):76.

[92] Alam M, Kashyap T, Pramanik KK, Singh AK, Nagini S, Mishra R (2017). The elevated activation of NFkappaB and AP-1 is correlated with differential regulation of Bcl-2 and associated with oral squamous cell carcinoma progression and resistance. Clin Oral Investig; 21(9):2721-2731.

[93] Deng W, Peng W, Wang T, Chen J, Qiu X, Fu L, et al (2019). Microarray profile of circular RNAs identifies hsa_circRNA_102459 and hsa_circRNA_043621 as important regulators in oral squamous cell carcinoma. Oncol Rep; 42(6):2738-2749.

[94] Kashyap T, Pramanik KK, Nath N, Mishra P, Singh AK, Nagini S, et al (2018). Crosstalk between Raf-MEK-ERK and PI3K-Akt-GSK3beta signaling networks promotes chemoresistance, invasion/migration and stemness via expression of CD44 variants (v4 and v6) in oral cancer. Oral Oncol; 86:234-243.

[95] Alam M, Kashyap T, Mishra P, Panda AK, Nagini S, Mishra R (2019). Role and regulation of proapoptotic Bax in oral squamous cell carcinoma and drug resistance. Head Neck; 41(1):185-197.

[96] Mishra R, Nagini S, Rana A (2015). Expression and inactivation of glycogen synthase kinase 3 alpha/ beta and their association with the expression of cyclin D1 and p53 in oral squamous cell carcinoma progression. Mol Cancer; 14:20.

[97] Zhang H, Wang G, Ding C, Liu P, Wang R, Ding W, et al (2017). Increased circular RNA UBAP2 acts as a sponge of miR-143 to promote osteosarcoma progression. Oncotarget; 8(37):61687-61697.

[98] Jin H, Jin X, Zhang H, Wang W (2017). Circular RNA hsa-circ-0016347 promotes proliferation, invasion and metastasis of osteosarcoma cells. Oncotarget; 8(15):25571-25581.

[99] Wu Y, Xie Z, Chen J, Chen J, Ni W, Ma Y, et al (2019). Circular RNA circTADA2A promotes osteosarcoma progression and metastasis by sponging miR-203a-3p and regulating CREB3 expression. Mol Cancer; 18(1):73.

[100] Wu Z, Shi W, Jiang C (2018). Overexpressing circular RNA hsa_circ_0002052 impairs osteosarcoma progression via inhibiting Wnt/beta-catenin pathway by regulating miR-1205/APC2 axis. Biochem Biophy Res Comm; 502(4):465-471.

[101] Hu J, Wang L, Chen J, Gao H, Zhao W, Huang Y, et al (2018). The circular RNA circ-ITCH suppresses ovarian carcinoma progression through targeting miR-145/RASA1 signaling. Biochem Biophy Res Comm; 505(1):222-228.

[102] Zhang N, Jin Y, Hu Q, Cheng S, Wang C, Yang Z, et al (2020). Circular RNA hsa_circ_0078607 suppresses ovarian cancer progression by regulating miR-518a-5p/Fas signaling pathway. J Ovar Res; 13(1):64.

[103] Chen Y, Ye X, Xia X, Lin X (2019). Circular RNA ABCB10 correlates with advanced clinicopathological features and unfavorable survival, and promotes cell proliferation while reduces cell apoptosis in epithelial ovarian cancer. Cancer Biomarkers: Section A of Disease Markers; 26(2):151-161.

[104] Wu DM, Wen X, Han XR, Wang S, Wang YJ, Shen M, et al (2018). Role of Circular RNA DLEU2 in Human Acute Myeloid Leukemia. Mol Cell Biol; 38(20):e00259-18.

[105] Zhou J, Zhou LY, Tang X, Zhang J, Zhai LL, Yi YY, et al (2019). Circ-Foxo3 is positively associated with the Foxo3 gene and leads to better prognosis of acute myeloid leukemia patients. BMC Cancer; 19(1):930.

[106] Cao HX, Miao CF, Sang LN, Huang YM, Zhang R, Sun L, et al (2020). Circ_0009910 promotes imatinib resistance through ULK1-induced autophagy by sponging miR-34a-5p in chronic myeloid leukemia. Life Sci; 243:117255.

[107] Liu J, Kong F, Lou S, Yang D, Gu L (2018). Global identification of circular RNAs in chronic myeloid leukemia reveals hsa_circ_0080145 regulates cell proliferation by sponging miR-29b. Biochem Biophy Res Comm; 504(4):660-665.

[108] Cui XL, Wang XD, Lin SK, Miao CM, Wu M, Wei JG (2019). Circular RNA circ_0067934 functions as an oncogene in glioma by targeting CSF1. Eur Rev Med Pharmacol Sci; 23(19):8449-8455.

[109] Cao Q, Shi Y, Wang X, Yang J, Mi Y, Zhai G, et al (2019). Circular METRN RNA hsa_circ_0037251 Promotes Glioma Progression by Sponging miR-1229-3p and Regulating mTOR Expression. Scientific Reports; 9(1):19791.

[110] Holdt LM, Kohlmaier A, Teupser D (2018). Circular RNAs as Therapeutic Agents and Targets. Front Physiol; 9:1262.

[111] Panda AC, Grammatikakis I, Munk R, Gorospe M, Abdelmohsen K (2017). Emerging roles and context of circular RNAs. Wiley Interdisc Rev RNA; 8(2).

[112] Breuer J, Rossbach O (2020). Production and Purification of Artificial Circular RNA Sponges for Application in Molecular Biology and Medicine. Methods Protocols; 3(2).

[113] Liu CX, Li X, Nan F, Jiang S, Gao X, Guo SK, et al (2019). Structure and Degradation of Circular RNAs Regulate PKR Activation in Innate Immunity. Cell; 177(4):865-880 e21.

[114] Ahmed I, Karedath T, Al-Dasim FM, Malek JA (2019). Identification of human genetic variants controlling circular RNA expression. RNA; 25(12):1765-1778.

[115] Bai H, Lei K, Huang F, Jiang Z, Zhou X (2019). Exo-circRNAs: a new paradigm for anticancer therapy. Mol Cancer; 18(1):56.

[116] Chen W, Moore J, Ozadam H, Shulha HP, Rhind N, Weng Z, et al (2018). Transcriptome-wide Interrogation of the Functional Intronome by Spliceosome Profiling. Cell; 173(4):1031-1044 e13.

[117] Dvinge H, Kim E, Abdel-Wahab O, Bradley RK (2016). RNA splicing factors as oncoproteins and tumour suppressors. Nature Rev Cancer; 16(7):413-430.

[118] Conn SJ, Pillman KA, Toubia J, Conn VM, Salmanidis M, Phillips CA, et al (2015). The RNA binding protein quaking regulates formation of circRNAs. Cell; 160(6):1125-1134.

[119] Lei B, Tian Z, Fan W, Ni B (2019). Circular RNA: a novel biomarker and therapeutic target for human cancers. Int J Med Sci; 16(2):292-301.

[120] Su M, Xiao Y, Ma J, Tang Y, Tian B, Zhang Y, et al (2019). Circular RNAs in Cancer: emerging functions in hallmarks, stemness, resistance and roles as potential biomarkers. Mol Cancer; 18(1):90.

[121] Li J, Sun D, Pu W, Wang J, Peng Y (2020). Circular RNAs in Cancer: Biogenesis, Function, and Clinical Significance. Trends Cancer; 6(4):319-336.

Rights & Permissions

Copyright: © 2020 Rajakishore Mishra. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.