The Applied Biology & Chemistry Journal (TABCJ)

ISSN: 2582-8789 (online)

Immunohistochemistry as an important tool for exploring the insights of various aspects of gastro-intestinal tract

Ritesh Kumar Shukla

Department of Zoology, St. Xavier's College, Ranchi, Jharkhand, India

N Venkat Appa Rao*

Department of Zoology, St. Xavier's College, Ranchi, Jharkhand, India

https://orcid.org/0000-0002-8786-2310

Published

25 December 2020

Abstract

The concepts in immunology and techniques in histology have come together in a novel way to create a pioneering discipline known as ImmunoHistoChemistry (IHC), to discover new ways in detecting cell and tissue antigens related to amino acids, proteins and infectious agents by using labeled antibodies. These amalgamation techniques are applied in the disciplines of endocrinology, entero-biology, neurobiology, pathology, tumor biology and pharmaceutical research as a diagnostic tool. The simultaneous advancements in the field of imaging techniques further assisted and widened the application of IHC in molecular studies, thereby facilitating the development of novel therapeutic strategies. This paper attempts to discuss the different aspects of gastro-intestinal tract in relation to its cellular diversity, cellular differentiation, physiology and pathology, through the application of IHC methods.

Keywords

cell identification; cellular diversity; gastro-intestinal tract; immunohistochemistry

Cite this article

Shukla RK, Rao NVA (2020). Immunohistochemistry is an important tool for exploring the insights of various aspects of gastro-intestinal tract. T. Appl. Biol. Chem. J; 1(2):72-82. https://doi.org/10.52679/tabcj.2020.0009

Citation: 1

References

[1] Jackson P, Blythe D (2008). Immunohistochemical techniques. In: John DB, Marilyn G (Eds). Theory and practice of immunohistochemical techniques; London, Churchill Livingstone:433-472.

[2] Coons AH, Creech HJ, Jones RN (1941). Immunological properties of an antibody containing a fluorescent group. Proc Soc Exp Biol; 47(2):200-202. https://doi.org/10.3181/00379727-47-13084P

[3] Coons AH, Creech HJ, Jones RN (1942). The demonstration of pneumococcal antigen in tissues by the use of a fluorescent antibody. J Immunol; 45:159-170.

[4] Tubbs R, Gephardt G, Petras R (1986). Atlas of Immunohistochemistry. Chicago, Ill: ASCP Press; p. 1-2.

[5] Singer SJ (1959). Preparation of an electron-dense antibody conjugate. Nature; 183(4674):1523-1524. https://doi.org/10.1038/1831523a0

[6] Nakano PK, Pierce GB (1966). Enzyme-labeled antibodies: preparation and localization of antigens. J Histocytochem; 16:929-931. https://doi.org/10.1177/14.12.929

[7] Sternberger IA, Hardy PH, Cuculis JJ (1970). The unlabeled antibody method of immunohistochemistry: preparation and properties of soluble antigen-antibody complex (horseradish peroxidase-antihorseradish peroxidase) and its use in identification of spirochetes. J Histochem Cytochem; 18:315-333. https://doi.org/10.1177/18.5.315

[8] Macrea ER (1999). Immunohistochemistry: Roots and Review. Laboratory Medicine; 30(12):787-790. https://doi.org/10.1093/labmed/30.12.787

[9] Faulk WP, Taylor GM (1971). An immunocolloid method for the electron microscope. Immunocytochemistry; 8:1081-1083. http://doi.org/10.1016/0019-2791(71)90496-4

[10] Mason DY, Sammons R (1978). Alkaline phosphatase and peroxidase for double immunoenzymatic labeling of cellular constituents. J Clin Pathol; 31:454-460. https://doi.org/10.1136/jcp.31.5.454.

[11] Hsu SM, Raine L (1981). Protein A, avidin, and biotin in immunohistochemistry. J Histochem Cytochem; 29(11):1349-1353. https://doi.org/10.1177/29.11.6172466

[12] Rahman S, Leong ASY (1991). Diagnostic Immunohistochemistry: current applications and future directions. Malaysian J Pathol; 13(1):17-28.

[13] Gown AM (2002). Genomic immunohistochemistry: a new era in diagnostic immunohistochemistry. Curr Diagnos Pathol; 8:193-200. https://doi.org/10.1054/cdip.2002.0116

[14] Kim SW, Roh J, Park CS (2016). Immunohistochemistry for Pathologists: Protocols, Pitfalls, and Tips. J Pathol Transl Med; 50(6):411-418. https://doi.org/10.4132/jptm.2016.08.08

[15] Scalia CR, Boi G, Bolognesi MM, Riva L, Manzoni M, DeSmedt L, et al (2017). Antigen Masking During Fixation and Embedding, Dissected. J Histochem Cytochem; 65(1):5-20. https://doi.org/10.1369/0022155416673995

[16] Norton AJ, Jordan S, Yeomans P (1994). Brief, high‐temperature heat denaturation (pressure cooking): A simple and effective method of antigen retrieval for routinely processed tissues. J Pathol; 173:371-379. https://doi.org/10.1002/path.1711730413

[17] Cattoretti G, Pileri S, Parravicini C, Becker MH, Poggi S, Bifulco C, et al (1993). Antigen unmasking on formalin-fixed, paraffin-embedded tissue sections. J Pathol; 171(2):83-98. https://doi.org/10.1002/path.1711710205

[18] Shi SR, Key ME, Kalra KL (1991). Antigen retrieval in formalin-fixed, paraffin-embedded tissues: an enhancement method for immunohistochemical staining based on microwave oven heating of tissue sections. J Histochem Cytochem; 39(6):741-748. https://doi.org/10.1177/39.6.1709656

[19] Robinson JM, Toshihiro T (2002). Antigen retrieval on ultrathin cryosections. Acta Histochemica et Cytochemica; 35(5):375-381. https://doi.org/10.1267/ahc.35.375

[20] Jackson P (2007). Quality assurance in immunochemistry. In: Renshaw S (Ed). Immunohistochemistry Methods. Oxfordshire, Express Scion Publishing Limited UK: p. 206-237.

[21] Hoffman GE, Murphy KJ, Sita LV (2016). The Importance of Titrating Antibodies for Immunocytochemical Methods. Curr Protoc Neurosci; 76:2.12.1-2.12.37. https://doi.org/10.1002/cpns.1

[22] Hewitt SM, Baskin DG, Frevert CW, Stahl WL, Rosa-Molinar E (2014). Controls for immunohistochemistry: the Histochemical Society's standards of practice for validation of immunohistochemical assays. J Histochem Cytochem; 62(10):693-697. https://doi.org/10.1369/0022155414545224

[23] Ivell R, Teerds K, Hoffman GE (2014). Proper Application of Antibodies for Immunohistochemical Detection: Antibody Crimes and How to Prevent Them. Endocrinol; 155 (3):676–687. https://doi.org/10.1210/en.2013-1971

[24] Moreau A, Le NT, Joubert M, Truchaud A, Laboisse C (1988). Approach to automation in immunohistochemistry. Clin Chim Acta; 278(2):177-184. https://doi.org/10.1016/s0009-8981(98)00145-4

[25] Jeffrey WP (2014). Overview of Automated Immunohistochemistry. Arch Pathol Lab Med; 138 (12):1578–1582. https://doi.org/10.5858/arpa.2014-0083-RA

[26] Schenck E (2007). Automated immunochemistry. In: Renshaw S (Ed). Immunohistochemistry Methods. Oxfordshire, Express Scion Publishing Limited UK: p. 240-248.

[27] Sternini C, Anselmi L, Rozengurt E (2008). Enteroendocrine cells: a site of “taste” in the gastrointestinal chemosensing. Cur Opin in Endocri Diabete Obesity; 15(1):73-78.

[28] Ahlman H, Nilsson (2001). The gut as the largest endocrine organ in the body. Ann Oncol; 12 Suppl 2:S63-S68.

[29] Hiramatsu K (2020). Chicken Intestinal L Cells and Glucagon-like Peptide-1 Secretion. J Poult Sci; 57:1-6. https://doi.org/10.2141/jpsa.0190003

[30] Kaptaner B (2019). Immunohistochemical distribution of insulin-, glucagon- and somatostatin-containing cells in the pancreas of Lake Van fish (Alburnus tarichi Güldenstädt, 1814) (Cyprinidae). Eur J Histochem; 63(1):2999. https://doi.org/10.4081/ejh.2019.2999

[31] Türk S, Çınar K, Öztop M (2019). Distribution and relative frequency of immunohistochemically detected endocrine cells in the stomach of New Zealand White rabbit (Oryctolagus cuniculus). Iran J Vet Res; 20(1):39-45.

[32] Firmiano EMS, Cardoso NN, Sales A, Santos MAJ, Mendes ALS, Nascimento AA (2017). Immunohistochemical study of the six types of endocrine cells in the enteropancreatic system of the lizard Tropidurustorquatus (Squamata: Tropiduridae). Euro Zoolog J; 84(1):266-276. https://doi.org/10.1080/24750263.2017.1330429

[33] Shukla RK, Rao NVA (2012). A comparative study of cryo and paraffin sections in localizing gastrin cells (G-Cells) in the stomach of Rana cyanophlyctis (Schneider), using immunocytochemical technique. The Bioscan; 7(1):149-152.

[34] Ku SK, Lee HS, Lee JH (2004). An immunohistochemical study of gastrointestinal endocrine cells in the BALB/c mouse. Anat Histol Embryol; 33(1):42-48. https://doi.org/10.1111/j.1439-0264.2004.00508.x

[35] Shukla RK, Chakraborty B, Rao NVA, Ahmad MF (2015). Immunohistochemical Localization of Gastrin Cells (G-Cells) in the Alimentary Canal of a Skipper Frog, Euphlyctis cyanophlyctis, Schiedner, (Anura; Ranidae). Proc Zoolog Soc; 68(1):45-51. http://doi.org/10.1007/s12595-013-0092-1

[36] Mazzoni M, Bombardi C, Vallorani C, Sirri F, Giorgio RD, Caio G, et al (2016). Distribution of α-transducin and α-gustducin immunoreactive cells in the chicken (Gallus domesticus) gastrointestinal tract. Poult Sci; 95(7):1624-1630. https://doi.org/10.3382/ps/pew057

[37] Rao NVA, Shukla RK (2013). Distribution of Gastrin Immune Reactive Cells in the Alimentary Canal of a Stomachless Hill Stream Loach, Lepidocephalus guntea (Hamilton): An Immuno – Histochemical Study. Proc Natl Acad Sci, India Sec B: Biolog; 83(4):603–607. https://doi.org/10.1007/s40011-013-0163-0

[38] Miller DW, Harrison JL, Brown YA, Doyle U, Lindsay A, Adam CL, et al (2005). Immunohistochemical evidence for an endocrine/paracrine role for ghrelin in the reproductive tissues of sheep. Reprod Biol Endocrinol; 3:60. https://doi.org/10.1186/1477-7827-3-60

[39] Egerod KL, Engelstoft MS, Grunddal KV, Nøhr MK, Secher A, Sakata I, et al (2012). A Major Lineage of Enteroendocrine Cells Coexpress CCK, Secretin, GIP, GLP-1, PYY, and Neurotensin but Not Somatostatin. Endocrinology; 153(12):5782–5795. https://doi.org/10.1210/en.2012-1595

[40] Sykaras AG, Demenis C, Cheng L, Pisitkun T, Mclaughlin JT, Fenton RA, et al (2014). Duodenal CCK Cells from Male Mice Express Multiple Hormones Including Ghrelin. Endocrinology; 155(9):3339–3351. https://doi.org/10.1210/en.2013-2165

[41] Säfsten B, Sjöblom M, Flemström G (2006). Serotonin increases protective duodenal bicarbonate secretion via enteric ganglia and a 5-HT4-dependent pathway. Scand J Gastroenterol; 41:1279-1289. https://doi.org/10.1080/00365520600641480

[42] Stengel A, Taché Y (2012). Gastric peptides and their regulation of hunger and satiety. Curr Gastroenterol Rep; 14(6):480-488. https://doi.org/10.1007/s11894-012-0291-3

[43] Shroyer NF, Wallis D, Venken KJ, Bellen HJ, Zoghbi HY (2005). Gfi functions downstream of Math 1 to control intestinal secretory cell subtype allocation and differentiation. Genes Dev; 19:2412-2417. https://doi.org/10.1101/gad.1353905

[44] Takata K, Kasahara T, Kasahara M, Ezaki O, Hirano H (1992). Immunohistochemical localization of Na (+)-dependent glucose transporter in rat jejunum. Cell Tissue Res; 267(1):3-9. https://doi.org/10.1007/BF00318685

[45] Zhang J, Shuwei Li, Fang D, Bhueliqihan B, Weijiang Y, Guoquan L (2019). Distribution of aquaporins and sodium transporters in the gastrointestinal tract of a desert hare, Lepus yarkandensis. Scientific Reports; 9:16639.

[46] Merigo F, Brandolese A, Facchin S, Missaggia S, Bernardi P, Boschi F, et al (2018). Glucose transporter expression in the human colon. World J Gastroenterol; 24(7):775-793. https://doi.org/10.3748/wjg.v24.i7.775

[47] Wong NACS, Herriot M, Rae F (2003). An immunohistochemical study and review of potential markers of human intestinal M cells. European J Histochem; 47(2):143-150. https://doi.org/10.4081/820

[48] Renfeng L, Xiangqin T, Songlin Q, Yanyan Y, Enmin Z, Gaiping Z, et al (2015). Morphological and Immunohistochemical Identification of Villous M Cells in the Small Intestine of Newborn Piglets. Internat J Morphol; 33(4):1261-1268. https://doi.org/10.4067/S0717-95022015000400011

[49] Fujita T, Kobayashi S (1974). The cells and hormones of the GEP endocrine system. In: Fujita T (Ed). Gastro-entero-pancreatic endocrinesystem: A cell biological approach. Baltimore, MA: Williams and Wilkins Maryland: p. 1-16.

[50] Fujita T, Kobayashi S (1977). Structure and function of gut endocrine cells. Int Rev Cytol; (6):187-233.

[51] Gribble FM, Reimann F (2016). Enteroendocrine Cells: Chemosensors in the Intestinal Epithelium. Annu Rev Physiol; 78:277-299. https://doi.org/10.1146/annurev-physiol-021115-105439

[52] Yukari D, Masayasu K, Hiroshi H, Akira S, Muhtashan SM, Tatsuo S, et al (2000). Ghrelin, a Novel Growth Hormone-Releasing Acylated Peptide, Is Synthesized in a Distinct Endocrine Cell Type in the Gastrointestinal Tracts of Rats and Humans. Endocrinology; 141(11):4255–4261. https://doi.org/10.1210/endo.141.11.7757

[53] Hoffer D, Asan E, Drenckhan D (1999). Chemosensory perception in the gut. News Physiol Sci; 14:18-23. https://doi.org/10.1152/physiologyonline.1999.14.1.18

[54] Psichas A, Reimann F, Gribble FM (2015). Gut chemosensing mechanisms. J Clin Invest; 125(3):908-917. https://doi.org/10.1172/JCI76309

[55] Rozengurt N, Wu SV, Chen MC, Huang C, Sternini C, Rozengurt E (2006). Colocalization of the alpha-subunit of gustducin with PYY and GLP-1 in L cells of human colon. Am J Physiol Gastrointest Liver Physiol; 291(5):G792-G802. https://doi.org/10.1152/ajpgi.00074.2006

[56] Margolskee RF, Jane D, Zaza K, Kieron SH, Salmon, Ilegems E, et al (2007). T1R3 and gustducin in gut sense sugars to regulate expression of Na+-glucose cotransporter 1. Proc Natl Acad Sci USA; 104(38):15075-15080. https://doi.org/10.1073/pnas.0706678104

[57] Jang HJ, Kokrashvili Z, Theodorakis MJ, Carlson OD, Kim BJ, Zhou J, et al (2007). Gut-expressed gustducin and taste receptors regulate secretion of glucagon-like peptide-1. Proc Natl Acad Sci USA; 104(38):15069-15074.

[58] Sutherland, K, Young RL, Cooper NJ, Horowitz M, Blackshaw LA (2007). Phenotypic characterization of taste cells of the mouse small intestine. Am J Physiol Gastrointest Liver Physiol; 292:G1420–G1428. https://doi.org/10.1152/ajpgi.00504.2006

[59] Raybould HE (2010). Gut chemosensing: interactions between gut endocrine cells and visceral afferents. Autonomic neuroscience: basic & clinical; 153(1-2): 41–46. https://doi.org/10.1016/j.autneu.2009.07.007

[60] Petersen KH, Lohse J, Ramsgaard L (2018). Automated sequential chromogenic IHC double staining with two HRP substrates. PLOS ONE; 13(11):e0207867. https://doi.org/10.1371/journal.pone.0207867

[61] Chen X, Cho DB, Yang PC (2010). Double staining immunohistochemistry. N Am J Med Sci; 2(5):241-245. https://doi.org/10.4297/najms.2010.2241

[62] Umar S (2010). Intestinal stem cells. Curr gastroenterol rep; 12(5):340–348. https://doi.org/10.1007/s11894-010-0130-3

[63] Demitrack ES, Samuelson LC (2016). Notch regulation of gastrointestinal stem cells. J Physiol; 594(17):4791-4803. https://doi.org/10.1113/JP271667

[64] May CL, Kaestner KH (2010). Gut Endocrine Cell Development. Mol Cell Endocrinol; 323(1):70-75. https://doi.org/10.1016/j.mce.2009.12.009

[65] Artavanis TS, Rand MD, Lake RJ (1999). Notch signaling: cell fate control and signal integration in development. Science; 284:770-776. https://doi.org/10.1126/science.284.5415.770

[66] Gaiano N, Nye JS, Fishell G (2000). Radial glial identity is promoted by Notch 1 signaling in the murine forebrain. Neuron; 26:395-404. https://doi.org/10.1016/s0896-6273(00)81172-1

[67] Latorre R, Steinini C, Giorgio RD, Meerveld GV (2016). Enteroendocrine Cells: A Review of their role in Brain-Gut communication. Neurogastoenterol Motil; 28(5):620-630. https://doi.org/10.1111/nmo.12754

[68] Mayer EA (2011). Gut feelings: the emerging biology of gut-brain communication. Nat Rev Neurosci; 2(8):10. https://doi.org/10.1038/nrn3071

[69] Dockray GJ (2014). Gastrointestinal hormones and the dialogue between gut and brain. J. Physiol; 14:2927-2941. https://doi.org/10.1113/jphysiol.2014.270850

[70] Rehfeld JF (1978). Immunochemical studies on cholecystokinin. II. Distribution and molecular heterogeneity in the central nervous system and small intestine of man and hog. J Biol Chem; 253:4022–4030.

[71] Dockray GJ (1976). Immunochemical evidence of cholecystokinin-like peptides in brain. Nature; 264:568–570. https://doi.org/10.1038/264568a0

[72] Innis RB, Snyder SH (1980). Distinct cholecystokinin receptors in brain and pancreas. Proc Natl Acad Sci USA; 77:6917–6921. https://doi.org/10.1073/pnas.77.11.6917

[73] Yu YY, Kirschke CP, Huang L (2007). Immunohistochemical analysis of ZnT1, 4, 5, 6, and 7 in the mouse gastrointestinal tract. J Histochem Cytochem; 55(3):223-234. https://doi.org/10.1369/jhc.6A7032.2006

[74] Kolachala VL, Sesikeran B, Nair KM (2007). Evidence for a sequential transfer of iron amongst ferritin, transferrin and transferrin receptor during duodenal absorption of iron in rat and human. World J Gastroenterol; 13(7):1042–1052. https://doi.org/10.3748/wjg.v13.i7.1042

[75] Anderson GJ, Powell LW, June W. Halliday JW (1990). Transferrin receptor distribution and regulation in the rat small intestine: Effect of iron stores and erythropoiesis. Gastroenterology; 98(3):576-585. https://doi.org/10.1016/0016-5085(90)90276-7

[76] Neutra MR (1998). Current concepts in mucosal immunity. Role of M cells in transepithelial transport of antigens and pathogens to the mucosal immune system. Am J Physio; 274:G785-G791. https://doi.org/10.1152/ajpgi.1998.274.5.G785

[77] Jepson MA, Clark MA (1998). Studying M cells and their role in infection. Trends Microbiol; 6:359-365. https://doi.org/10.1016/s0966-842x(98)01337-7

[78] Nicoletti C (2000). Unsolved mysteries of intestinal M cells. Gut; 47:735-739. https://doi.org/10.1136/gut.47.5.735

[79] Dillon A, David DL (2019). M Cells: Intelligent Engineering of Mucosal Immune Surveillance. Front Immunol; 10:1499. https://doi.org/10.3389/fimmu.2019.01499

[80] Rieger J, Janczyk P, Hünigen H, Plendl J (2015). Enhancement of immunohistochemical detection of Salmonella in tissues of experimentally infected pigs. Eur J Histochem; 59(3):2516. https://doi.org/10.4081/ejh.2015.2516

[81] Wong HH, Chu P (2012). Immunohistochemical features of the gastrointestinal tract tumors. J Gastroinstest Oncol; 3(3):262-284. https://doi.org/10.3978/j.issn.2078-6891.2012.019

[82] Nanassy J, Demellawy DE (2017). Review of current applications of immunohistochemistry in pediatric nonneoplastic gastrointestinal, hepatobiliary and pancreatic lesions. Anal Chem Insights; 12:1-11. https://doi.org/10.1177/1177390117690140

[83] Liu C, Ghayouri M, Brown IS (2020). Immunohistochemistry and special stains in gastrointestinal pathology practice. Diagnostic Histopathology; 26(1):22-32. https://doi.org/10.1016/j.mpdhp.2019.10.010

[84] Leong AS, Wright J (1987). The contribution of immunohistochemical staining in tumor diagnosis. Histopathol; 11:1295-1305.



Rights & Permissions

Copyright: © 2020 Ritesh Kumar Shukla & N Venkat Appa Rao. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.